Adaptive Scene-Based Non-Uniformity Correction Method for Infrared-Focal Plane Arrays
نویسندگان
چکیده
The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise. In this paper we present an enhanced adaptive scene-based non-uniformity correction (NUC) technique. The method simultaneously estimates detector’s parameters and performs the non-uniformity compensation using a neural network approach. In addition, the proposed method doesn’t make any assumption on the kind or amount of non-uniformity presented on the raw data. The strength and robustness of the proposed method relies in avoiding the presence of ghosting artifacts through the use of optimization techniques in the parameter estimation learning process, such as: momentum, regularization, and adaptive learning rate. The proposed method has been tested with video sequences of simulated and real infrared data taken with an InSb IRFPA, reaching high correction levels, reducing the fixed pattern noise, decreasing the ghosting, and obtaining an effective frame by frame adaptive estimation of each detector’s gain and offset.
منابع مشابه
Adaptive Bias Compensation for Non-Uniformity Correction on Infrared Focal Plane Array Detectors
The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise. In this paper we present a new adaptive scene-based non-uniformity correction (NUC) technique. The method simultaneously estimates detector’s parameters and performs the non-uniformity compensation using a neural approach and a Kalman estimator in a frame by frame recur...
متن کاملGhosting reduction in adaptive nonuniformity correction of infrared focal-plane array image sequences
Non-uniformity correction is a critical task for achieving higher performances in modern infrared imaging systems. Lately, special interest has been given to a scene-based adaptive non-uniformity correction approach based on a neural network with a steepest descent learning rule. However, low motion and some scene artifacts such as edges usually cause the production of ghosting-like artifacts o...
متن کاملA Novel Non-Uniformity Correction Algorithm Based On Non-Linear Fit
Infrared focal plane arrays (IRFPA) sensors, due to their high sensitivity, high frame frequency and simple structure, have become the most prominently used detectors in military applications. However, they suffer from a common problem called the fixed pattern noise (FPN), which severely degrades image quality and limits the infrared imaging applications. Therefore, it is necessary to perform n...
متن کاملNUC algorithm by calculating the corresponding statistics of the decomposed signal Parul Goyal
Infrared focal plane arrays (IRFPA) imaging systems are strongly affected by the spatial non-uniformity of the IRFPA response. The non-uniformity is due to the pixel-to-pixel responsivity (gain) and dark current (offset) variations of the IRFPA. The non-uniformity results in a fixed spatial noise superimposed on the infrared image, which can completely mask the useful thermal signatures in an i...
متن کاملScene-based nonuniformity correction using texture-based adaptive filtering
The detectors within an infrared focal plane array (FPA) characteristically have responses that vary from detector to detector. It is desirable to remove this “nonuniformity” for improved image quality. Factory calibration is not sufficient since nonuniformity tends to drift over time. Field calibration can be performed using uniform temperature sources but requires briefly obscuring the field-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002